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Abstract: The two-electrons-in-two-orbitals active space model of electronic structure of biradicals and biradicaloids
is extended to a Hamiltonian that incorporates the usual kinetic and electrostatic energy terms, and also outside
electric and magnetic fields, spispin dipolar terms, and one- and two-electron sfirbit coupling terms. It leads

to a more rigorous version of the SalefRowland rules for the dependence of-5, spin—orbit coupling (SOC)

in biradicals and biradicaloids on molecular structure and conformation. For larg® BOC in a bitopic biradical,

(i) the localized orbital$\ andB that are singly occupied in the, Btate either interact covalently or one of them is
sufficiently lower in energy to have nearly double occupancy in thst&e, (ii) on at least one atom of reasonably

high atomic number one p orbital contributes stronglyAtand another td, and (iii) the atomic contributions add
constructively rather than destructively. The nature of this addition is such that inverse heavy atom effects on SOC
are possible. Through-bond coupling is essential and its effects are apparent from simple resonance structures,
illustrated ono,w-alkanediyl biradicals. Implications for the zero-field splitting parameters of triplet states are noted.

Introduction istry, ISC at biradicaloid geometries is particularly important,
since it provides access to newy, &inima and therefore
frequently leads to photochemical transformations.

Factor (ii), the T—Sy ISC rate as a function of molecular

In triplet photochemical reactiodg, excitation of organic
molecules from the ground statey)]$to the lowest triplet state
(T) triggers geometrical changes, followed by intersystem goometry, is less well understood. In biradicals with well

crossing (ISC) to & and by further geometrical changes genarated radical centers, hyperfine interactions provide the main

associated with thermal equilibration. The structure and ef- |5 mechanisri However, in those with radical centers close

ficiencies of formation of the products depend on (i) the nature together, of most interest to us presently, sgbit coupling—®

of the motions executed in the, Btate, (ii) the probability of (SOC) is believed to be dominant. Among the factors that

ISC at the various geometries reached jnahd (i) the motions determine the ISC rate, the Franeondon weighted density

executed after return to the, State. of states plays a similar role as it does in—Sy internal
Factors (i) and (iii) are governed by the shapes of therid conversion, but the ISC rate from a triplet sublevgtdra singlet

So energy hypersurfaces, the temperature, and the rate ofg s also proportional to the square of the SOC matrix element
vibrational equilibration with the environment. In solutions, [T, |ASOg[

vibrational equilibration with the solvent is fast. Transitionstate  |f the populations of the three sublevels are in rapid

theory can be used for the description of motion on the T  equilibrium on the time scale of triplet lifetime, the To §

surface, and steepest descent for the description of the final|Sc rate is dictated by the scalar

motion on the $ surface® In the low-pressure gas phase,

vibrational equilibration with the environment is slow and — 11O, SO SO 172

RRKM theor?/ can be used to describe the fate of the very SOG=(ITHASI + T HASTF + ITJHAS )

energetic $molecules produced by the ISC, almost indepen- This can be thqught of as the length of a vecB®G with

dently of the geometry at which ISC occurred (hot ground state componentdT,|HS9S0(the “spin—orbit coupling vector” for

reactions). Our present interest is in solution reactions, in which T,—S§).

the geometry of return to theyState plays a paramount role. The present basis for qualitative understanding of the
Much effort has gone into the calculation of the dhd $ structural dependence of,|HS9|SCat biradicaloid geometries

surfaces and into the rationalization of their shapes (e.g., usingis an analysis by Salem and Rowldhgerformed for the 2-in-2

correlation diagrams). The T; surface tends to have low-energy model of biradical electronic structure (active space: two

regions at three types of geometrigshose where §also has electrons in two orbitals, also known as the3Cl model®15),

a minimum, those of triplet exciplexes, and “biradicaloid Assuming that the biradical has two completely localized

geometries”, with two roughly nonbonding molecular orbitals (5) Turro, N. J.. Kraeutler, B. IDiradicals, Borden, W. T., Ed.. Wiley:

(MOs) each occupied by one electron. In solution photochem- new York, 1982; p 259. Forbes, M. D. E.; Ruberu, S.JRPhys. Chem.
1993 97, 13223. See also: Buchachenko, AGhem. Re. 1995 95, 2507.

® Abstract published if\dvance ACS Abstractdjarch 1, 1996. (6) Closs, G. L.; Forbes, M. D. E.; Piotrowiak, P. Am. Chem. Soc.
(2) (@) Turro, N. Modern Molecular Photochemistriniversity Science 1992 114, 3285.
Books: Mill Valley, CA, 1991. (b) Gilbert, A.; Baggott, Essentials of (7) Richards, W. G.; Trivedi, H. P.; Cooper, D. &pin—Orbit Coupling
Molecular PhotochemistnCRC Press: Boca Raton, FL, 1991. (c) Kopecky, in Molecules Clarendon Press: Oxford, 1981.
J. Organic PhotochemistryVCH: New York, NY, 1992. (8) McGlynn, S. P.; Azumi, T.; Kinoshita, MMolecular Spectroscopy
(2) Klessinger, M.; Michl, J.Excited States and Photochemistry of of the Triplet StatePrentice-Hall: Englewood Cliffs, NJ, 1969.
Organic MoleculesVCH: New York, NY, 1995. (9) Ellis, R. L.; Jaffe H. H. In Modern Theoretical ChemistrySegal,
(3) Michl, J. Top. Current Chem1974 486, |. G., Ed.; Plenum: New York, 1977; Vol. 8, p 74.
(4) Michl, J.; Bonadi-KoutecKy, V. Electronic Aspects of Organic (10) Salem, L.; Rowland, GAngew. Chem., Int. Ed. Endl972 11, 92.
PhotochemistryWiley: New York, NY, 1990. (11) Michl, J.Mol. Photochem1972 4, 257.
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Spin—Orbit Coupling in Biradicals. 1

radical-carrying orbital#\ and B with some p character, they
found that strong SOC was favored by three factors: (i)
orthogonality of the axes of the two p orbitals, in keeping with
the El-Sayed rulé$ for ISC in aromatics, (i) “ionic” (zwitte-
rionic, hole-pair) character in thegSvave function, and (iii)
spatial proximity of the orbital$\ and B.

A fair amount of theoretical work on spiorbit coupling in
biradicals and biradicaloids followed Salem and Rowland’s
original paper. Shaik and Epiotfsanalyzed qualitatively
various reaction paths involving biradicaloid geometries but their
assumption of a closed-shell (single determinang)wave
function appears hard to justify. Tl initio results of Carlacci
et al18 for the trimethylene biradical were compatible with the
Salem-Rowland rules. Additional computational results have
been obtained for 1,%,241,321.222426 gnd 1,41.252"piradicals.

J. Am. Chem. Soc., Vol. 118, No. 15, 198669

Results and Discussion

States of an Electron Pair. We first summarize the states
of two electrons confined to two orbitals in the absence of spin-
orbit coupling®12-14.28.29

(a) One-Electron Functions. The spin space is spanned by
the orthonormal spin functions andf, and the orbital space
by the two most localized orthonormal orbitédsindB (minimal
interorbital and maximal intraorbital electrerlectron repul-
sion). The two spaces are isomorphic, and we use the symbol
a when eithero. or A is meant, and the symbblwhen eithei
or B is meant.

The equivalence of any two-level problem to the problem of
a particle of spin'/, in magnetic field® results from the fact
that any Hermitean 22 matrix is fully characterized by its four
complex elements. The average of the diagonal elements is

In the present paper, we elaborate and illustrate our restate-chosen as the energy zeg, and their difference as well as

meng422.280f the Salem-Rowland rules. Regarding the need
for “ionic” character, we show that only the introduction of the
symmetrized hole-pair structuré + B?) into the $ wave
function of a perfect biradical is helpful for SOC (in all but
axial® biradicals, a weak polarization of the State fails to

introduce the symmetrized hole-pair structure and does not help).

The effect of the two-electron part of the SOC operator, ignored
by Salem and Rowlant,is found to be negligible.

We also consider explicitly the delocalizationfdfndB into

the saturated skeleton and the resulting vectorial one- and two-

center contributions from orbital pairs on individual atotg?28
which can interfere constructively or destructively. The mode

of interference can often be discerned from molecular symmetry.

the real and imaginary parts of the off-diagonal element can be
thought of as three components of a real ve&ton,, hy, and

h, = ({alhy|alH B|h,[b0y/2
h, = Reah, b0
h, = Im@|h,|b0
h, = (@|h,al— m]h,[bDV2

In the spin spaceh = (gB8s/2)B, where theg factor is close
to 2, B is the Bohr magneton, ariglis external magnetic field,
with component$,, By, andB; in real space. In an unperturbed

Numerical results demonstrate that this through-bond mechanismsystemB = h = 0, both eigenstates have zero energy, and are

dominates SOC in biradicals. Against the original expecta-
tions10 the through-space distance betwe®mnd B plays a
subordinate role. We illustrate the results @m-alkanediyl
biradicals. Finally, we caution that the 2-in-2 model, on which
the rules are based, is only valid for bitopic biradicals.
Subsequent papers in this series desaiiténitio computa-
tions of spir-orbit coupling in a wide variety of biradicals and
biradicaloids, and analyze the results for the bitopic ones in
terms of the presently discussed algebraic 2-in-2 model.

(12) Borden, W. T. IrDiradicals; Borden, W. T., Ed.; Wiley: New York,
1982; p 1.

(13) Bonat-Koutecky, V.; KoutecKy, J.; Michl, J.Angew. Chem., Int.
Ed. Engl.1987 26, 170.

(14) Michl, J.; Bondie-KoutecKy, V. Tetrahedron1988 44, 7559.

(15) Michl, J.J. Mol. Struct. (Theochem1)992 260, 299.

(16) El-Sayed, M. AJ. Chem. Physl963 38, 2834. Lower, S. K.; El-
Sayed, M. A.Chem. Re. 1966 66, 199.

(17) Shaik, S.; Epiotis, N. DJ. Am. Chem. Sod 978 100,18; 198Q
102, 122. Shaik, SJ. Am. Chem. Sod.979 101, 3184.
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J.J. Am. Chem. S0d.992 114, 1623.

(21) Helms, A. M.; Caldwell, R. AJ. Am. Chem. S0d.995 117, 358.

(22) Michl, J., U. S—Japan Binational Semin&few Aspects of Molecular
Photochemistry in Photocearsiony University of Tsukuba, Japan, April
13—-17,1992. Michl, J.; Downing, J. \Book of AbstractdAPS 5th Winter
Conference, Clearwater Beach, FL, Januar621993; p 10.

(23) Minaev, B. F.; Jonsson, D.; Norman, P.; Agren,Ghem. Phys.
1995 194 19.

(24) Beckmann, M.; Klessinger, M.; Zerner, M. G. Phys. Cheml996
in press.

(25) Zimmerman, H. E.; Kutateladze, A. G.; Maekawa, Y.; Mangette, J.
E.J. Am. Chem. S0d994 116, 9795.

(26) Furlani, T. R.; King, H. FJ. Chem. Phys1985 82, 5577.

(27) Morita, A.; Kato, SJ. Phys Chem 1993 97, 3298.

(28) Michl, J. In Theoretical and Computational Models for Organic
Chemistry Formosinho, S. J., Csizmadia, |I. G., Arnaut, L. G., Eds.;
Kluwer: Dordrecht, The Netherlands, 1991; p 207.

described by the functione and 3 or their arbitrary linear
combinations.

In orbital space,h vanishes for an unperturbed perfect
biradical, which has two orbitals of zero energy, described by
the functionsA and B or their arbitrary linear combinations.
Analogous to the three componentsBfone-electron perturba-
tions of a perfect biradical come in three distinct flavors, and
these correspond to the three components of vector the
abstract space of biradicaloid structure.

The one-electron part of covalent perturbatiom, =
ReA | hy| B produces a homosymmetric biradicalétd®31This
perturbation can be introduced only by a change in molecular
structure, not by introduction of an outside field. It is equivalent
to the Hickel resonance integral between the localized orbitals
A andB. An example is the untwisting of ethylene away from
the 90 twist angle. .

The magnetizing perturbatiohy = Im[Ah;|BL) produces a
magnetized biradical. It cannot be introduced by a change in
molecular structure, but only by introduction of an outside
magnetic field. An example is an ;Omolecule placed in
magnetic field directed along the molecular axis.

The one-electron part of polarizing perturbation, =
(CAIhy|AO— [B|hy|B0J2, produces a heterosymmetric biradica-
loid.131431 |t can be introduced either by a change in the
molecular structure of the biradical or by imposition of an

(29) For additional detail, see refs 15 and 28.

(30) Cohen-Tannoudji, C.; Diu, B.; LalpeéF. Quantum Mechani¢s
Wiley: New York, NY, 1977.

(31) Our definition&314of homosymmetric, heterosymmetric, and non-
symmetric biradicaloids differ slightly from those originally introduced by
Salem and Rowlant/.

(32) E.g.: Carrington, A.; McLachlan, A. Dntroduction to Magnetic
ResonanceHarper and Row: New York, 1967.

(33) Weltner, W., JrMagnetic Atoms and Molecule¥an Nostrand
Reinhold: New York, 1983.

(34) We could have equally well chosen to rotate to the most delocalized
orbitals instead, and this would have only had the effect of interchanging
the significance of the labelsandz in the singlet subspace.
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outside electric field with a nonvanishing component along the
line that connects the centers of the orbitdlandB. Both of

Michl

For the moment, we neglect the element$i8f. The matrix

then separates into two completely analogou8 ®locks, one

these perturbations make the energies of these localized orbitaldor the singlets and one for the triplets. We treat them in parallel

different, and a polarizing perturbation is equivalent to the
introduction of a difference between the”¢kel Coulomb
integrals of orbitalsA and B. Examples are 90 twisted
aminoborane, or similarly twisted ethylene placed in an electric
field with a non-zero component along the CC axis.

which VAB = 6AB =0.

in order to bring out the formal identity of the results.

We first redefine a structurally perfect biradical as one for
In an unperturbedq = B = 0) perfect
biradical, the Hamiltonian matrix is then diagonal, and the six

functionsJu]Z andTO[u], u = X, Y, z, describe the eigenstates.

In general, more than one of the perturbations may be present The energies of the triplet levels are split by up to a€wor

simultaneously (in nonsymmette!43biradicaloids both co-
valent and polarizing structural perturbations are present).
(b) Two-Electron Functions. Both in spin space and in

ordinary space, the two-electron function space is spanned by

the four productsa(1)a(2), a(1)b(2), b(1)a(2), andb(1)b(2).
Following the usage that is standard for spin sp&ééwe
choose the basis function

Tors=2"Ya(1)b(2) — b(1)a(2)]

in the subspace that is antisymmetric relative to electron label

permutation, and the functions

X or ©[X] = —2a(1)a(2) — b(1)b(2)]
Syl or ©[y] = 2 [a(1)a(2) + b(L)b(2)]

97 or ©[7 = 2 ¥a(1)b(2) + b(1)a(2)]

in the subspace that is symmetric. HoandS, a= A, b =B,
and forz and®, a = a, b = . The phase factors on the right
secure cyclic permutation properties with regarcty, andz
(Appendix).

The total wave functions in the 2-in-2 model are elements in
the direct product of the spin space and the orbital (geminal)

space. Pauli principle restricts their number to those that are K
antisymmetric with respect to electron interchange: three singlet” ~B

levels u]Z, u = X, y, 2 and the three sublevels of a triplet
(TO[U], u=x, Y, 2.
The average enerdy(T;) of the triplet sublevels is

E(T,) = [A|hy|ACH [B|h,|BH
[AB|€’/r,|ABC [AB|€%/r,,|BAL
=h,+ hg + g — Kpg

The Hamiltonian matrix simplifies if we first make judicious
use of the two available degrees of rotational freedom (Ap-
pendix). One of these is the freedom of orbital rotation in the
one-electron function space. For a general choicé ahdB,
the elementdgx]Z|H,|9Z=0and [§Z2|H, g x]=0are non-
zero. After rotation in the orbital space to the most localized
orthogonal orbitals possibfé they vanish. A simple algorithm
for finding these orbitals is availablé. The other degree of
freedom is the rotation of the molecular coordinate system in
real space. By choosingy, andzto coincide with the principal
axes of the spirspin dipolar coupling tensor, we diagonalize
its contribution to the triplet block.

With E(T1) as the energy zero, the Hamiltonian matrix (1)
for the active space of the 2-in-2 model then is

so by the magnetic dipotemagnetic dipole interaction of the
two electrons,

D, = (§°B12)TI(r%, — 3ul)/r 3, TO

whereu = x, y, or z, andri is the interelectronic distance. The

Dy, Dy, and D, values measure the anisotropy of the electron
distribution and add up to zero (we neglect the small eleetron
electron contact term, which shifts all three levels equally). The
molecular axes are usually labeled so as to produce the order
D, > Dy > Dy. However, the analogy between the singlet and

the triplet subspace is illustrated best if we adbpt> Dy >

Dy, with TO[Z] the lowest in energy, and@i®[y] the highest.
The energies of the singlet levels are split by c& tb010*
cmt by electric chargecharge interactions of the two elec-
trons. The exchange integréll\g between the two localized
orbitals A and B is the self-repulsion of their overlap charge

density and measures their interpenetration,

Kag = AB|€’/r,,|BAT

whereas the integraf,; is related to the separation of their

centroids [it is equal to the exchange integral between the two
most delocalized orbitals, 2% A + B)]

= [(AAIE’/r .| AACH [BBJe/r,,|BBI/2 —
[AB|€’/r,,|ABJ/2
= [(Jaa T )2 = Jpell2

The energy of th&] 7 state lies above that of the average of
the three nearly degenerate triplet sublevels, and is followed
by §x], with §y] at the highest energy(gz = Kag = 0). In
pair biradicals Kz > Kag = 0),13 such as orthogonally twisted
ethylene, A andB are well separated, the triplet sublevels are
nearly degenerate witf 7], and the much higher lying states
9x] and Jy] are also very close in energy to each other. In
axial biradicals Kag = Kjg),'® such as linear carbene, the
triplet sublevels lie well belovwH 7], which is degenerate with
9X], andgy] is much higher. Most among the perfect biradicals
are intermediate between the pair and axial limits.

Perturbation of a perfect biradical by a structural change or
by an external field introduces off-diagonal elements into the
Hamiltonian matrix. In the triplet subspace, they represent the
Zeeman perturbation by they, andz components of an outside
magnetic fieldB. In the singlet subspace, they represent a
generalization of the one-electron perturbations introduced
above, and are due to the covalent interaction between the
orbitalsA andB (yas, analogous tdy in the spin space), to the

SR P Sk TOIX] Toly] To[Z
INE 2K (Opg— EETaR)li  2BB(FxV)ag ihSQ iy ih5
PIE  i(0ps —€ETad)  2(Kppt Kpp) Vadll hoy + h?& hi? + hgyoy hiy + hg}%
4% 288 x V)adi ivag 2Kp D] h3 heli i
TOK]  hSYi he + Moo ih32 —D, 9B/ i95B,
Tolyl  hoi h3y + hoo iy, i95:B, —by 98B,
TO[Z hYi hiy + hoe ih32 9BBy/i 1958, —D,
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Ky Kip o arbitrary strength causes the “edatot” structure§z and the

-D, -D, 2_/ “symmetrized hole-pair” structureSy] to mix through the off-

2 2 diagonal elemenyag, and (ii) a polarizing perturbation by an
off-diagonal elemendg larger than a critical threshold value
do brings about a state crossing and causes thetee to be
described by an uneven mixture of the “symmetrized” and

_— “antisymmetrized” hole-pair structure§gx] andgy]. Sincé3

1

1
2 2 a2
4
E
2—/
1
To\

00 = 2[Kpp(Kag — Kap)] vz

we havedg = 0 in the limit of an exactly axial biradical. In
this special case, an arbitrarily small polarizing perturbation will
stabilize thegx] component of the initially degeneratg Sate

by acquisition of som&y] character. Combinations of the two
kinds of perturbation are also possible.

! ! ! In the way of examples, we note that the State of
Dl B! G orthogonally twisted ethylene, a perfect biradical that is nearly
Figure 1. Energies of either (i) the three singlet states or (ii) the three exactly of the pair type Kag very small), can acquirdy]
triplet states of the 2-in-2 model of biradical structure in arbitrary units, character (i) by twisting away from orthogonality and (i) by
as a function of the absolute value of the off-diagonal Hamiltonian polarization in a very strong electric field (e.g., by placing a
matrix element, {][Z] (covalent perturbation for singlets, or magnetic sjtive charge of more than 1.735 elementary units on the CC
]:slier:glé?s X :r'rﬁggge‘;?g girgakljaisr)é {g%cgﬂa;g’n?rislggrbﬁ:'o*r]'[;fr axis at a distance of 1.85 A froa C atord®) or by heteroatom
(magnetizing perturbation for singlets, or magnetic fiely iirection rep'acem‘?”.t (e.g., gong at least to an OrthOQ.ona"y twisted
for triplets). Top, center, and bottom rows show results for three choices formaldl_ml_nlum cation or more surely, to aminoboréfe
of (i) Kne, Kiyg (top, axial biradical, and bottom, pair biradical) or (iiy ~Along similar lines, the gstate of bent carbene, a heterosym-
—D,/2, —Dy/2, in the same arbitrary units. The energy labeled zero is Metric biradicaloid § > 0, since orbitaB has some s character

| —

N

—

[ 20

20

(i) equal to or (i) —2D,/3 below the average triplet energy. and lower energy), has consideral$iig] character (a weak
o _ ) ) heterosymmetric perturbation is sufficient since linear carbene
magnetizing perturbation by an outside magnetic fi2l@.B- is a perfectly uniaxial biradical, wittK,; = Kag). The

(r x V)ag, analogous toBy in the spin space], and to the existence of two distinct types of perturbed biradicals for which
polarizing perturbation (analogous & in the spin space),  SOC can be large was noted originally by Salem and Rowi&nd.

induced by molecular structuréAg) and/or an outside electric Spin—Orbit Coupling. The matrix eIementsﬁ]’x|l3|50|SD
field E (—eE-rag): 0,|HS9S0 and [0,/HSOSO are responsible for the weak

. . 5 interaction between the singlet and triplet subspaces in the
Vas = [Alhy|BCH [BIh, |ATH [AA€/r; ) ABLH Hamiltonian matrix. The operatafSC = H$° + H3° de-

BB e2/r12| BA sqribes the interaction of the spin magnetic moments Qf electr_ons
with the magnetic moments caused by their own orbital motion
Ons = AR ATH [AAIEYr,|AATR — [H5° = %ih?90)], and with that of other electrons, as well as
AB ! 12 . the shielding effects of the latteFf° = 5;;h5%,j), i = jl.
(1B|hy|BCH- (BB|€’/r,,|BBIR) Ignoring the presumably negligible effect of an external electric

. . field on this operator, it has the fofh
rg = [ATJAL- B|F|BO

(F x V)ag = [AF x V|BC= (i/)ABO YY) = (gﬁilhz)ZZKIrKI’3Tf'§

with f standing for the position operator (the zero differential .

overlap approximation is used,< 0 for electron chargé,for h§°(i J) = _(gﬁi/hz) rij_g[(fi - f;) x (5 + 2%)

the angular momentum operator, &dor the gradient operator.

The three components &f x V are the differential rotations ~ where the sum runs over all nuclgi Z, is the atomic number
aroundx, y,andz /3§, d/on, andd/ag. of nucleus;c,AfK is the position operator of the electron relative

The expressions for the energies and eigenfunctions of theto nucleus, |i“ is the angular momentum operator with nucleus
Hamiltonian as a function of the three types of perturbation are « taken as the origirg is the spin angular momentum operator,
formally identical in the singlet and the triplet subsp&te|f andp is the linear momentum operator.
only one of the three possible perturbations is present, the Evaluation of the elements &fSCin the Hamiltonian matrix
energies plotted in Figure 1 apply, and are valid equally for the gives
three triplet and the three singlet states, with vastly different
energy scales. If two or all three perturbations are present, the h3o = gﬁgzZKB\IIFKI73(fK x V),/BO
curve crossings are generally avoided. The significance of the 5
crossings for singlet photochemistry (“funnels” i) S'sudden
polarization”3 orbital angular momentum quenching (“sudden h50 = (gB%2)[[AB|g,|AA— [AB|g,|BBJ
magnetization”), etc., has been discus&ed.

The lowest singlet state;®f an unperturbed perfect biradical
is described by the functio§Z] (in perfectly axial biradicals,
degenerate withgx]). It will be important for spin-orbit
coupling that $can acquire partied{y] character in two linearly h§g= (gﬁ§/2)|1\8| g,/BAO
independent ways (Figure 1): (i) a covalent perturbation of

oo = (GB/2)i[[AB|g,|AAT [AB|g,|BB

(35) Bonat-Koutecky, V.; Bruckmann, P.; Hiberty, P.; Koutecky.; (36) McWeeny, R.; Sutcliffe, B. TMethods of Molecular Quantum
Leforestier, C.; Salem, LAngew. Chem., Int. Ed. Engl975 14, 575. Mechanics Academic Press: New York, 1969; p 214.
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whereu = x, y, zand with the active space, it is appropriate to account for the effect
of the electrons of the fixed core by replacing the factor
g=r, F,— ) x (¥, + ¥ gp2ZIr,| % in the integral by the empirical value of the atomic

spin—orbit coupling constang, for the valence p orbitals on

atom«.3° Since we are primarily interested in organic mol-

ecules, we ignore any contributions to the natural hybrid orbitals

3. s made by d AOs and those of an even higher angular momentum.

[AB|g,|AAL= (A(L)B(2)Ir, “I(F, — rl)AX R The spir-orbit coupling constant increases rapidly with increas-
(V1 + V)l JA(DA(R)T ing atomic numbetZ,.

Disregarding Rydberg-type orbitals with very low occupan-

etc. cies, each atom that carries four valence orbitals contributes
All the elements ofA3° that occur in the Hamiltonian  a sum over the twelve ordered non-diagonal pairs of its four
matrix for the active space depend on the overlap density of natural hybrid orbitals. Adding up the two contributions from
the localized orbitalA and B and would be neglected in the any of the only six possible hybrid orbital pairs, taken in one

ie.,

zero differential overlap approximation. In the casd,qiﬂjthe and the other order, then produces six numbers:
overlap density appears twice and this integral is particularly

small. The elements;, vanish exactly in a perfect biradical, W= S¢S (CaCa — CaCo )EIF x V), v
in which A and B are equivalent. Our numericalb initio . Z C g e e * !

calculations for selected examples with polarized basis sets and

configuration interaction of reasonable $&¥ confirmed that wherex runs over non-hydrogen atoms and the hybrid orbital
the size of the elements 6f;° within the active space matrix pair label fiv]x (u < v) runs over all six orbital pairg,v on

is indeed negligible and we ignore them in the following. In atom . Numerical evaluatici3” shows that on most atoms,
contrast, the elements 65 that involve both the active space  the coefficient products in the parentheses are small, and all
and inner shells are large. After af;° is primarily due to  contributions are negligible. On some atoms, one and occasion-
the shielding of nuclei by inner shell electrons, and provides a ally two or more are large, making a qualitative interpretation
contribution that is roughly half the size of thatiéf®and has  of the results facile.

the opposite sign. We shall return to this issue below. Atomic Vectorial Contributions to SOC. It appears most

To evaluate the elements 6f°, the orbitalsA and B are convenient to base qualitative understanding on the consideration
expressed in terms of an AO basis: of the vectorial contribution§, [.1(Ca.Car — CarCru) LLIF* X
VivO(u < v) provided by each atom. We therefore view
\AC= ZCAu| ull hie, hiy, andhP?y as components of a vectbP®, equal to the
T sum of all these atomic vectorial contributions. Once the

orbitals A and B are known, each atomic vector is readily
evaluated, since for orbitals located on aten(f x V)px =
=Py, F X V)Py=p § x V)P, = x V)s=0, etc., by
cyclic permutation of indices.

The vectorlk|r* x V]vOwith componentd|(r< x V)y|vO
|(r< x V)ylvODandz|(r x V) v[s perpendicular to the axes

IBO= ZCBVWD

and h;° becomes a triple sum over atom labelsind orbital

labelsy andv: of the two hybrid orbitalgc andv. To determine its sense, the
. ) . hybrid orbitals are represented by p orbitals drawn with their
hyy = gﬂezzxz ZCAuCvaHrKV (r, x V) vO signs as they appear in the orbitAlendB. Then,v is rotated

Ko so as to make it coincide with. When the direction of this
rotation is indicated with the curved fingers of the left hand, its

For the atomic basis set we use the pre-orthogonal naturalthumb points in the direction dfk|r“ x V|vLI The absolute
hybrid orbitals introduced by Weinhof§. Each of these is  direction depends on the arbitrary choice of phase of orbitals

strictly localized on a single atom and orthogonal to other hybrid @nd B, but the relative directions of the atomic contributions,
orbitals located on the same atom but not to hybrid orbitals @nd thus their constructive or destructive interference as they

located on other atoms. add to formhSO, are independent of this choice. The length of
the vectorlg|r* x V|v[s unity if bothu andv are pure p orbitals
with axes at 99to each other. As s orbital contributions o
andv increase, the vector becomes shorter.

A Reformulation of Salem—Rowland Rules for Spin—
Orbit Coupling in Biradicals . In terms of state wave functions
based on the most localized orbital getB, with molecular
axes chosen as the principal axes of the spjpin dipolar
coupling tensor, in the absence of outside fields, with the neglect
of h3° and with the usual definition of triplet zero-field
splitting parameter® = 3D/ 2 andE = (Dx — Dy)/2, the
Hamiltonian matrix for the active space of the two-electron two-
orbital model takes a simplified form (2) suitable for a discussion
of the structural dependence of SOC.

As shown by numerical evaluati$hfor selected examples,
the contributions t;_ provided by nucleus and those pairs
of natural hybrid orbitals that are not both centered«oare
very small due to the factdr,| =3 in the integral, and we shall
neglect them. Since the operatorx V annihilates an s orbital
located orx, the summation is then restricted to non-hydrogen
atomsx only.

In evaluating the remaining terms, in whi¢h> and |v>
are both located on ator) the presence of core electrons, and
specifically, the electrons of the inner shells, cannot be ignored.
Since the two-electron two-orbital model only deals explicitly

(37) Havlas, Z.; Downing, J. W.; Michl, J. Unpublished results.
(38) Reed, A. E.; Curtiss, L. A.; Weinhold, Ehem. Re. 1988 88,
899. (39) McClure, D. SJ. Chem. Phys1949 17, 905.
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IXZ = 4% To[ Tolyl  Te[Z
IXZ 2Ky Oudi 0 0 0 0
9yIE 04 2(Khet Kad Vadi WP h%y hY
g4 0 1V a8 2Kpyg O 0 0
Toq 0 KO 0 DB-E 0 0 )
TOy] O hiy 0 0 DI3+E O
To[4 © h3o 0 0 0 —2D/3
(a) Perfect Biradicals. Consider first a perfect biradical, in These results permit a revised formulation of the Satlem

which the covalenty) and polarizing §) structural perturbations ~ Rowland rules for spiftrorbit coupling in a general perturbed
vanish. Only the highest energy singlet st&fg]=, mixes with biradical:

the triplet sublevels, and its interaction with i@ sublevel is In order for SOC betweeny&nd T, to be large, the most
dictated byhZ°. localized orthogonal orbitals A and B singly occupied in T
should be as follows:

(i) They either interact cealently through a non-zero
resonance integral and/or are sufficiently different in energy
for one to hae electron occupancy near two iR.S

(i) The biradical contains one or more high-Z atoms at which
one p orbital contributes strongly to A and another to B.

(iif) These p orbitals enter into A and B in a manner such

Since the wave function of the lowest statgiS JZX (in
axial biradicals, degenerate wifx]X), we obtain the Salem
and Rowland resulf that in perfect biradicals the triplet
sublevels do not couple top&t all. Triplet to lowest singlet
conversion by the spinorbit coupling mechanism requires that
the biradical be perturbed to a biradicaloid in order for igs S

state to acquire at least some and preferably a large amount Ofthat the contributions on all such atoms add rather than cancel.

= cr.1ara.cter.. ) Condition (i) is a more rigorous statement of the Salem and
(b) Biradicaloids. Wheny or ¢ or both are different from  Rowland’s requiremetftof “ionic character” in g. For systems

zero, the eigenfunctions of the Hamiltonie®,(j = 0, 1, 2), with A andB at equal or similar energies, it is met at the expense
acquire the form of increasing the energy of;Tabove its minimum.
If the condition is to be met by making the energie\aind
§=CSXZ+ C 9ylZ + C,92= B different enough for the hole-pair structure to dominagatS

is essential to go beyond the critical threshold value of the
Using the previously introduced notation, the final general heterosymmetric perturbatiaky discussed above. This value
formulas of the 2-in-2 model for the spirbit matrix elements, 1S Smallest whemA and B are located at the same atom and

the spin-orbit coupling vectorSOG and the scalar coupling generally increases with th(_air increa_sing separation. Thus, in
SOCbetween §and the sublevels of Tare a carbene, already a small difference in the content of s character

in the two nonbonding orbitals is sufficient, whereas in a twisted
ethylene, one of the carbons needs to be replaced by an atom

™SO, SO __ _ : - g
THTISE= Cohry = CoyZCK Z_ (CAuCBv CAch,u) x at least as electronegative as a positively charged nitrogen. In
o Tk 1,3 biradicals the required electronegativity difference is even
| (F* x V), lvO larger, and indeed, there is experimental evidéhdeat a
moderate degree of polarization does not enhance the rate of
SOC=C,h*°=C, S ¢ (Ca,Ca, — CaCa) X intersystem crossing in 1,3-diaryl-1,3-cyclopentanediyls.
Oyh OyZ ‘ [T By AR Condition (ii) effectively requires the principal parts of the

orbitalsA andB to be represented by p orbitals whose axes are
orthogonal or close to it, and thus often runs directly counter
to condition (i) if their energies are similar.

Through-Bond Coupling. In order to evaluate properly the
above condition (ii), it is essential to work with a reasonably

For a large value 08OCbetween $and T, (i) perturbation realistic representation of the localized orbit&lsand B that
of the perfect biradical needs to be such as to make theincludes any partial delocalization through the saturated chain

coefficient Coy large. Two ways of achieving this have been that is due to through-bond interactions. Even though the extent

described above. The other requirement is for the vet$6r of such delocalization is small, the numeriedd initio results
to be long. This requires (ii) large individual atomic vectorial '€Ported in the following papers of this series show that through-
contributions and (iii) constructive rather than destructive bond interactions normally dominate SOC in saturated biradicals

addition of these contributions. A large atomic contribution is (since .numerlcal results were not ava!laple, th'.s was not

rovided when one of the orbitals and B contains a large appr_eugteq_by Salem and Rowland n their ploheering Budy
providec . . . The insignificance of through-space interactions is due to the
contribution fran a p orbital on an atom of a relatively high

tomi beZ. and th tomi orbit : d factor |r,|~2 in the matrix element, which causes them to fall
atomic numbeZ, and thus atomic spiorbit constant,, an off very rapidly with the distance between the orbitals involved.

the other, a large contribution from a different p orbital on the gince two-center terms hardly ever play an important role, we
same atom. The constructive or destructive mode of addition 5y neglected them in the simplest formulation of the 2-in-2

of atomic contributions is often apparent from symmetry or model.

approximate symmetry. For instance, even in twisted ethylene (Chart 1), the dominant
The direction of the final vectohS® normally is of lesser interaction is not provided by the two-center term involving
importance: the squares of its projections into the principal axes - -
. . . RN (40) Kita, F.; Nau, W. M.; Adam, W.; Wirz, . Am. Chem. S0d.995
X, y, andz determine the relative rates at which the individual 137 gg70.
triplet sublevels T, Ty, and T, convert to &. (41) Langhoff, S. RJ. Chem. Phys1974 61, 3881.

|f* x VivO

SOC= C,,Ih*)
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the singly occupied p orbitals on the two neighboring.€rbons, transform like the rotation®,, R, and R,, and the overall

but by the (oppositely signed) sum of the terms involving one symmetries of the total functionE9[x], TO[y], andTO[Z] are

of these p orbitals at a time along with the small portion of the thus again easily determined. Only those of the three that belong
other singly occupied orbital that is delocalized by hypercon- to the same irreducible representation ag&h be mixed with
jugation onto the adjacent GHyroup?>3” For more distant it by action of the totally symmetric spirorbit coupling
carbons, the two-center terms are even less important. operator. For othersSOCvanishes.

Use of Symmetry. In symmetrical biradicaloids, condition lllustrations. To illustrate the qualitative use of the revised
(iii) is the longest recognized and most obvious in that it follows  ryles for SOC in biradicals and biradicaloids, consider the all-
immediately from group theory. Itis more difficult to apply to  antj (planar zigzag) conformations afw-alkanediyl biradicals
biradicaloids whose geometries lack any helpful symmetry (Chart 1, Table 1, whose footnotestates the directions of
elements. molecular axes).

Tlhe lusgg of groulp tzebqryd_in lthggevaluatioln Cr’]f St())C in (a) Odd Number of Carbon Atoms. In its hypothetical
molecule Iln genera anth Ira (cha %I n partlcuta;. as i eerr\]. h linear geometry), carbene has the orbita#sandB represented
common. In our case, the Ireducible représentations to whic by the g and g AOs on carbon. Since the resonance integral

the space parts 0f°$m.d T belong are “?ad”y identified once between them vanishes by symmetry, and since their energies
the symmetries of orbital& andB or their symmetry-adapted are equal by symmetry, it is a perfect biradical ardV@l not

combinations are determined. In blradlcglo@s, the energies of be mixed with T, by SOC. Note that linear carbene violates
A andB or their symmetry-adapted combinations are different, o . oo o " . ! . )
condition (i) while it satisfies condition (ii). Since it contains

and the space part 0¥ 0,0 andz, biradicaloids, but not only one non-hydrogen center, condition (iii) is not applicable.

o blradlce_llmds, _typlcally pelongs fo the to.tally symmetric The vanishingSOCalso follows directly from symmetry: the
representation. Since the singlet spin funcibis also totally ~
degenerate ghelongs taAg and T; belongs toZg . Therefore,

symmetric, the overall symmetry of, 8f typical biradicaloids < n
is usually easily determined. In perfect biradicals, the energies TO[X] and TO[y] belong jointly to Ilg, and TO[Z] to %, .
of AandB are equal since they normally belong to a degenerate 'nese are both different fromy. Note that symmetry permits
representation. The symmetry determination then tends to pethezsublevel of T to spin—orbit couple with the excited singlet
a little more complicated, but is not needed for our purposes, Z, (in our notationgy]=), as expected from the 2-in-2 model.
sinceSOCvanishes as noted above. In the realistic bent geometry of carber, (A andB still

The space part of {Tbelongs to the product of irreducible have a zero resonance integral, but their energies are different
representations of the two symmetry-adapted singly occupiedsince one contains an admixture of s character. Since linear
orbitals. Its three possible spin pa®{x], ©[y], and ©[7] carbene is an axial biradicab{ = 0), already a small energy



Spin—0rbit Coupling in Biradicals. 1 J. Am. Chem. Soc., Vol. 118, No. 15, 19%%/5

Table 1. Symmetry Aspects of SpinOrbit Coupling in All-Anti a,w-Alkanediyl Biradical8

point (A) (B) allowed
no’ gref A+B A-B T O[x] Oly] o7 TO[X] TO[Y] TO[Z So sublevel
1 Deh () 2y Ig g Zy Ig Mg 2; Aq
2 Czp (b]_) (al) Bl Bz B]_ A2 A2 Al Bz A1 y
3,4 Ca = b, B> B> B1 Az A A, B1 A X
5 Cz,, b]_ 27 Bz Bz B]_ A2 Al Az Bl A1 X
6, 15 C b a B B B A A A B A X,y
7 Cs a a’ A" A" A" A’ A’ A’ A" A’ Xy
8, 16 Cs @ @) A" A" A" A’ A’ A’ A" A" 7
9 D2h b3u ng Blu B3g BZg Blg BZu BBu Au Ag
10 Dag e A, E E A, E E Ay B1
11 D, bs b, B Bs B2 B B, Bs A A z
12 Con by, 3y By By By Aq Ay Ay By Ag
13 Con N by By By By Ay Ay Ay By Ag
14 G a = Ay Ag Ag Aq Ay Ay Ay Ag

2|rreducible representations for the symmetry-adapted one-electron functions singly occlpifatialized,A andB, in parentheses, or delocalized,
A + B], the two-electron triplet space functidn, the two-electron triplet spin functior®[x], ©[y], and ©[Z], the total two-electron triplet wave
functions TO[X], TO[y], and TO[Z], and the total two-electron singlet wave function 'SOnly biradical geometries that have at least some symmetry
elements are included. For the other&[X], TO[y], and TO[Z] are all allowed by symmetry to spirorbit couple with $. ¢ Point group, with the
z axis vertical and thg axis horizontal in the formula as drawn in Chart 1 (carbon atoms in the plane of the paper). Exceftions4, and15
are drawn in perspective (B zis the 2-fold symmetry axis anglis the other in-plane axis, and f xy is the symmetry plane), ihl zis the C-C
line, perpendicular to the plane of the papgis horizontal andk vertical, and in8 and 12—16 z is perpendicular to the plane of carbon atoms,
while x andy lie in this planed Labels of triplet sublevels that are symmetry allowed to mix wighRlthough TO[x] is symmetry allowed to
couple with §, in the present approximation this spiarbit coupling vanishes.Although TO[Z] is symmetry allowed to couple withoSin the
present approximation this sptorbit coupling vanishes.

difference is sufficient to guarantee an electron occupancy closechain length, but less rapidly, and it will depend on the CCC
to two in the lower energy orbital in theyState. Conditions  valence angle. For 1,5-pentanediyl and longer cha#js (
(i) and (ii) are now both fulfilled, while condition (iii) is still condition (i) will be satisfied rather poorly in this conformation,
irrelevant. We expec8OCto increase strongly as the HCH and much better in more folded conformations that bArand
valence angle decreases from 180t should stop increasing B into through-space interaction. These will be considered in
as Coy approaches its limiting value of 22 Probably even a later paper.

before then, it will start dropping as the valence angle ap- Condition (i) is satisfied on both terminal carbon atoms. On
proaches 99 at which point the more stable orbitBl loses one, A has a large amplitude on the in-plane p orbital of the
nearly all of its p character and becomes an essentially pure sradical center an8 has some, albeit small, amplitude on the p
orbital, violating condition (ii). The triplet sublevel that mixes orbital participating in the formation of the CC bond. On the
with & is selected by the direction &S, which lies alongy other terminal carbon, the roles éfandB are interchanged.
(i.e., along the HH line), perpendicular to the axes of the two The direction of the atomic vectorial contributions is alogg
carbon p orbitals involved i\ andB. Most of these results  perpendicular to the plane of the carbon atoms. The internal
also follow from symmetry: in th€,, point group,A belongs carbon atoms are likely to make smaller contributions, since
to by andB to a, the space part of {Tto B;, and the overall there, the coefficients oA andB are both small.

symmetry of TO[X], TO[y], and TO[Z] to A, A;, and B, Since we now have more than one contributing atomic center,
respectively. Sincegransforms like A, only TO[y] will spin— condition (iii) needs to be considered. Do the out-of-plane
orbit couple to it. Numerical calculatioffs* agree with these  vectors provided by the terminal carbons add, or do they cancel?
conclusions. In the former case, Swill spin—orbit couple to theTO[X]

The 90,90 conformations af,w-alkanediyls with an odd sublevel, in the latterSOC will vanish. Working out the
number of carbon atoms,(4, axes of both singly occupied p  directions from the rules given above shows that the two
orbitals in the plane of the carbon atoms) are “ethanologous” contributions add. An easier way to reach this conclusion is to
carbenes in the sense that no-bond resonance structures contaiisse group theory, starting with the symmetry-adapted orbitals
ing a triplet carbene substructure can be written as minor 2-Y4A 4 B): in the Cy, point group,A + B belongs to aand
contributors to the valence-bond description of their triplet states A — B to by, the space part of iTtherefore belongs to Band
(the importance of such structures will decrease with the the overall symmetry oT®[X], TO[y], and TO[Z] belongs to
increasing number of lost bonds, i.e., with the length of the A, A, and B, respectively. Since ¢Stransforms like A,
carbon chain). These resonance structures can be viewed asymmetry permit§O[x] to spin—orbit couple to it, but the other
shorthand symbols indicating the delocalization of the two two sublevels cannot.
nonbonding orbitals byo hyperconjugation through anti- Note that the conclusion that all three conditions are satisfied
periplanar interactions familiar from the usual interpretation of andSOCwill not vanish (but will fall off with the chain length)
electron transfer, photoelectron spectra, Grob fragmentation,was reached for reasons different from those applicable to the
spin—spin and hyperfine coupling constants, etc., in terms of previous example of carbene, even though the presence of
through-bond coupling. carbene-like resonance structures was important. The inherent

In these structures, the energiesfofndB are equal, and  orthogonality of the axes of the singly occupied orbitals of
condition (i) can be satisfied only by the presence of a non- carbene provided large one-center contributions and permitted
zero resonance integral between them. This is easily providedcondition (ii) to be satisfied in both cases, but in carbene itself
in 1,3-propanediyl §) by direct through-space interaction the only way to satisfy condition (i) was to introduce inequiva-
between the main portions of these two orbitals at carbons 1lence betweer andB by bending, whereas in 1,3-propanediyl
and 3 for all realistic CCC valence angles, but cannot be it was achieved by introducing a resonance integral (making

provided in this way for the longer-chain biradicdls In chains
of all lengths, through-bond coupling provides an additional
opportunity for covalent interaction. This, too, will fall off with

the ends interact).
The 0,0 conformation of the odd-carbon biradical chafs (
both p orbital axes perpendicular to the plane of carbon atoms)
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satisfies condition (i) by through-space interaction and hyper- electrons. In order to contribute to the fulfilment of condition
conjugation for all chain lengths (these two contributions to the (ii), these ethylene substructures need to be at geometries other
resonance integral have opposite signs and cancel for certairthan planar ethylene, and preferably close to orthogonal ethylene.
CCC valence angles in the case of 1,3-propan&iybut it At 90,90 C2n) conformations 12), 1,4-butanediyl and its
does not satisfy condition (ii) sincA and B are both ofx longer analogues satisfy conditions (i) and (ii), but fail condition
symmetry and cannot each comprise a different p orbital on (iii). This is immediately obvious from symmetryTO[x],

any one center. Condition (iii) does not need to be examined TO[y], and TO[Z] transform like A, A, and B, respectively,

to reach the conclusion that SOC vanishes. and cannot couple withgSwhich transforms according togA
This result does not follow from symmetry alone: in tBg At 0,0 (Cxn) conformations 13), these biradicaloids satisfy

point group,A + B belongs to handA — B to &, the space condition (i) but fail condition (ii). Sublevel symmetries are

part of T; to By, and the overall symmetry of®[x], TO[Y], the same as ii2, andSOCagain vanishes.

andTO[Z to A1, Ay, and B, respectively. SincegSransforms At partially twisted conrotatoryp,¢ (C;) conformationsl4

like A1, TO[X] is symmetry allowed to spinorbit couple to it, with parallelA andB orbital axes, condition (i) is clearly fulfilled

but the other two sublevels are not. However, the allowed and condition (ii) may be met, but condition (iii) is not. All
coupling depends on the very small two-center terms only, and three triplet sublevels are of fsymmetry and cannot couple
these have been neglected in the present model. with Sp, which is of Ay symmetry. In contrast, at partially

At the partially twisted symmetric conformationg,o (6, twisted disrotatory¢,—¢ (C,) conformations15, all three
conrotatory,C,) and ¢,—¢ (7, disrotatory,Cs), conditions (i), conditions are satisfied. The sublevel®[x], TO[y], and
(ii), and (iii) are all satisfied. Fo6, the overall symmetries of = TO[Z] transform like A, A, and B, respectively, so the first two
the triplet sublevels are A for the andy directions, so these  spin—orbit couple to g, which also transforms like A.

two couple to g (for TO[Z] the symmetry is B and it does not The “semirotatory”Cs 0,90 geometryl6 does not satisfy
couple). For7, the symmetries are'Aor thex andy directions, condition (i), since one of the orbitals is afand the other of
so these sublevels again couple to(fer TO[Z] the symmetry o symmetry, causing their resonance integral to vanish, and since
is A" and it does not couple). their energies are similar. At thi€s geometry, the overall

Among less symmetrical configurations, the “semirotatory” Symmetries of the triplet and singlet levels are the same as in
Cs 0,90 geometn8 fails to satisfy condition (i). One of the 8. Once again, the coupling betweenid®dTO[Z] is symmetry
localized orbitals is oft and the other of symmetry, so their allowed, but is due only to terms neglected in the simple model.
resonance integral must vanish, and their energies are not At partial twist angles (@ or ¢,90 geometries), all three
sufficiently different for one of them to acquire both electrons conditions of the model are satisfied, 88@Cdoes not vanish.
in S at the cost of substantial charge separation. We conclude Normal and Inverse Heavy Atom Effects. Like other
that SOCvanishes within the present model, even though the properties of biradicals and biradicaloids, th&OC can be

coupling of $ to TO[Z is allowed by symmetry: atCs affected by the introduction of inductive and/or conjugating
geometry, the overall symmetries of tA®[x], TO[y], and substituents. These operate by the usual modes of action,
TO[Z sublevels are A A", and A’, respectively, and that ofS primarily by changing the shapes and energies of the orl#tals
is A". andB and modifying the CI mixing coefficient§;,. They can
At partial twist angles (@ or ¢,90 geometries), all three  affect the size oBOCin either direction.
conditions are satisfied, arflOCdoes not vanish. In addition, unlike most properties, SOC is known to respond
(b) Even Number of Carbon Atoms. Ethylene satisfies  to the “heavy atom effect” of the substituent, specifically due
condition (i) but violates condition (ii) when it is plana®)( to the introduction of a “heavy” (largé. and{,) atom into the
and violates condition (i) but satisfies condition (i) when it is molecule!248 Obviously, such substitution offers an op-
orthogonally twisted X0), so in both limiting casesSOC portunity to provide a new atomic contribution with a very large

vanishes (at the latter geometry, ethylene is a perfect biradicalweight{,, if A delocalizes onto one arilonto another p orbital
and this result is obvioua priori). This agrees with group  on the heavy atom. IZ, and thusg,, are sufficiently large,
theory: the overall symmetries of the three triplet sublevels of even a very moderate degree of participation by the p orbitals
the planarD,, molecule are B, Ba, and A, and none can  of the heavy atom ik andB may be sufficient for its vectorial
couple to the §state (A4). In the orthogonally twistedyq contribution to dominate those from the lower atomic number
molecule, the symmetries are E for the degenerate pair of atoms originally present. Often, the introduction of a heavy
sublevelsTO[x] and TO[y], and A, for TO[Z]. Since 3 atom therefore greatly increases the total length of SKxC

transforms according to ;Bit cannot spir-orbit couple with vector, and changes its direction as well. This is the origin of
any of the three triplet sublevels. the normal “heavy atom effect”.

In partially twisted ethylenel(l), however, conditions (i), However, the vectorial atomic contribution from the heavy
(i), and (iii) are all fulfilled and $ spin—orbit couples with ~ atom substituent t&OC may also be merely comparable in
TO[Z], which is of A symmetry in the Rgroup, whileTO[X] size to the sum of contributions already present. If it happens

transforms like B and TO[y] like Ba. As mentioned above, to be pointed approximately in the opposite direction, the
condition (i) is satisfied by delocalization of the p orbital of introduction of the heavy atom can actually decrease the
each carbon atom of the twistecbond into the orbitals of the  resulting length o5OC  Such an “inverse heavy atom effect”
CH, group on the other carbon. The degree of such hypercon-is rare but known and has been considered puzZfingve

jugative delocalization is small, and the net resultB@Cis suspect that a systematic search, guided by the simple model

also relatively small. outlined here, would probably rapidly uncover additional
In a fashion entirely analogous to what we have seen for odd- instances of this predictable “anomaly”.

carbon o,w-alkanediyls, longer even-carbon triplet,w-al- In addition to the “internal heavy atom effect” discussed so

kanediyls can be viewed as “ethanologous” triplet ethylenes for far, an “external heavy atom effect” is also well recognizéd?

the purpose of understanding the delocalization of their unpaired It is due to the presence of atoms of high andg, in molecules
that are in immediate contact with the substrate, usually

(42) Doubleday, C. D., Jr.; Mclver, J. W., Jr.; Page, MAm. Chem.
Soc.1982 104, 6533. Goldberg, A. H.; Dougherty D. Al. Am. Chem. (43) Turro, N. J.; Kavarnos, G.; Fung, V.; Lyons, A. L., Jr.; Cole, T., Jr.
Soc.1983 105 284. J. Am. Chem. S0d.972 94, 1392.
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molecules of solvent, and represents an extremely sensitiveif the effects of spir-orbit coupling matrix elements, also
probe of the delocalization of the singly occupied orbitAls  present in the matrix, are negligible. Although it appears to be

andB onto neighboring molecules. justified in the absence of heavy atoms in the very few cases of
Application of the Results. In conclusion, we comment on  biradicals for which calculations have been repoffesiich as
two applications of the results that have been obtained. carbené'! and also in the cases that we have examined s¥ far,

(a) Limits of Applicability. While the 2-in-2 model is likely it is not yet clear just when the correction for SOC will be
to represent most bitogitbiradicals adequately, there are many  significant.
important photochemical processes that involve biradicals of ~ The proper procedure is to diagonalize the whole Hamiltonian
higher topicity, i.e., those in which the radical centers also carry matrix with the elements dfiSCincluded, and only then evaluate
lone pairs, empty valence orbitals, or multiple bonds. For these, D andE from the energies of the predominantly triplet resulting
the model should not be applied. levels. In ordinary organic molecules, the SOC elements are

(b) Intersystem Crossing (ISC) in Biradicals. A desirable small relative to the tripletsinglet energy difference and their
description of a process in which a triplet biradical wanders €ffects are adequately described by second-order perturbation
through a variety of conformations before finally converting to theory. Itis then seen that they will have no detectable influence
a stable singlet molecule would call for a molecular dynamics on the ordinarily quite large separations of the singlet levels.
study in which the variable strength of spiarbit coupling is However, the three triplet sublevels are spaced so close together
considered continuously and the probability of product formation that even very small differential effects of their coupling to the
is evaluated at all time¥. A knowledge of SOC as a function  singlet states may affect the size of the resulthgand E
of structure is an essential prerequisite. parameters.

In many cases, the presently common descrigtibased on In perfect biradicals, this is particularly likely if thy]=
the sudden approximation, is probably adequate. In this picture,State is low in energy. For this, the sufjg + Kag needs to
the triplet biradical goes through a large number of conforma- be small, and this is most likely whefandB are delocalized
tions in which the T and $ states are nearly degenerate and OVer the same atoms. For instance, in then@lecule, where
its wave function is a rapidly oscillating mixture of singlet and the y]Z state lies only 1.64 eV above the State, spir-orbit
triplet character, with the triplet dominant at all times. A coupling provides the dominant contribution B33 Large
decision as to whether the triplet or the singlet potential energy €ffects might also be found in those biradicaloids in whigh S
surface will be followed needs to be taken only when the has largeJy]X character and is nearly degenerate with T
biradical reaches a geometry in which the two surfaces separate Using second-order perturbation theory, assuming thies
in energy. Typically, this is a geometry at which there is either below & in energy, and returning to the usual labeling of the
through-space or through-bond covalent interaction between theaxes, such thab > 0, E < 0 (i.e.,D; > Dy > Dy, T, lowest
orbitalsA andB. After that, the triplet surface most likely will ~ and T, highest in energy), the correct values of the zero-field
dictate the molecular motions (with a probability given by the Splitting parameterd)’ andE', are related to the valués and
average weight of the triplet in the wave function at the time of E calculated from the triplet part of the Hamiltonian matrix alone
decision), but occasionally, the singlet surface will do so (with (Spin dipole-dipole coupling without SOC) by
the complementary probability given by the weight of the _, _
singlet). After many attempts, the decision will eventually fall D'=D+ Z[E(q) — E(M)] 1Cjzy{ (h)” —
in favor of the singlet, the singlet surface will be followed, and ! SO SO
a stable molecule will be formed. [(h3)? + (W52}

In many saturated biradicals, the energies of Ahand B L 5 ,
orbitals are fairly close, and according to the present model, ~ E' =E+ Z[E(ﬁ) — E(M]'CI(h5)7 — ()2
the only likely geometries at which SOC will be strong are those ]
at which there is a significant covalent interaction between the
two radical centers, i.e., just those at which a decision is likely
to be taken. This interaction destabilizes the sfate and
stabilizes the @state, and this has two important consequences.
First, a small but non-zero activation energy should be needed
for the triplet biradical to reach the best geometries for ISC.
Second, immediately after the transition from thetd the $
state, the molecule should find itself part way down a deep abyss
in the S potential energy surface, into which it is very likely
to fall immediately. In that sense,;t0 & ISC in triplet
biradicals should be concerted with the formation of a new bond.
Experimental evidence for this has been accumuldfing.

(c) Zero-Field Splitting Parameters in Triplet States of
Biradicals. A side benefit of the present analysis is insight
into the effect of spir-orbit coupling on thé andE parameters
that are frequently measured to characterize the triplet state of
organic biradicals. They are determined by the energy differ-
ences among the three triplet sublevels in zero magnetic field conclusion
and are often interpreted in terms of the spépin dipolar
interactions alone, i.e., using only the triplet block of the
Hamiltonian matrix given above. This procedure is correct only

whereE(S) — E(T) is the difference between the energy of the
jth singlet $and the average energy of the triplet sublevels.
These expressions show explicitly the three factors that
control the size of the SOC contributions from each singjet S
to zero-field splitting in biradicals and biradicaloids: (i) the-S
Ty gaps, (i) the lengths of th&OG vectors that describe
coupling with the various singlet stateg &d (iii) the directions
of these vectors in the molecular frame defined by the principal
axes of the spin dipotedipole coupling tensor. IBOG makes
equal angles with all three axes,y,andz, its contribution to
the total effect on the zero-field splitting parameters is nil,
regardless of its length. If it is inclined towamand away
from thexy plane, it will increasé®, and if it is inclined toward
x and away fromy, it will make E less negative. The overall
effect is deduced by summing over the contributions from all
singlet states, weighted by their inverse energies relati&Th

The 2-in-2 model of electronic structure deals with the most
localized orbitalsA andB singly occupied in the Tstate and
describes spiriorbit coupling in bitopic biradicals and biradi-

(44) Dauben, W. G.; Salem, L.; Turro, N. Acc. Chem. Red.975 8, caloids in terms of ST; spin—orbit coupling vectorsSOG,
41'(45) De Kanter, F. J. J.: Kaptein, B. Am. Chem. Sod982 104 4750,  W0Se components describe the coupling pfoSTy, Ty, and
Wagner, P. JAcc. Chem. Re<989 22, 83. Wagner, P. J.- Meador, M. 1z The length oSOG = SOCdefines the overall T, SOC
A.; Zhou, B.; Park, B.-SJ. Am. Chem. Sod 991, 113 9630. strength.
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In the 2-in-2 modelSOCis given by a product of a scalar
Coy that is characteristic of the Cl wave function of thesgate
and a vectohSO, characteristic of the orbitals andB.

The scalaCyy is the amplitude of the symmetrized hole-pair
structureJy] in the § wave function. It vanishes in perfect
biradicals. Two types of perturbation can ngy] into S, make
Coy NoN-zero, and induce spitorbit coupling of $ with T1: a
covalent interaction oA andB, and a polarization that causes
one of the hole-pair structures? or B?, to dominate the &
state.

The vectoh®Cis a sum of atomic vectors. Each of these is
provided by a non-hydrogen atom that carries a contribution
from A on one p orbital and frorB on another, is proportional
to the atomic spirrorbit coupling constani,, and is a sensitive
function of the through-bond delocalizationA&findB, as well

as geometrical symmetry. These vectors are readily visualized

from the form of the orbitalé\ andB, and from a consideration

of standard resonance structures. In addition to ordinary heavy-
atom effects, the vectorial nature of the sum provides for inverse

heavy atom effects.
These concepts are illustrated on the case,efalkanediyl
biradicals at various conformations, and their application to

intersystem crossing in biradicals and to the evaluation of zero-
field splitting parameters in EPR spectra of triplets is discussed.

Finally, we point out formal similarities in the quantum

Michl

functions, and they are the directions of the magnetizing
perturbation and the covalent perturbation in the abstract space
of perfect biradical perturbations wharandb are taken to be
orbitals.

Using the standard forth of the rotation operator for a
particle of spin'/,,

RYw) = cos@/2) — i& - n sin(/2)
wherew is the angle of rotation and the components of the

unit vectorn are the direction cosines of the axis of rotation,
one obtains for the functions adapted to the axesdx

al=[1+i)2a*+ib?
bY=[1+i)2)@a*—ib?
a*=[1—-i)2)@a*+b?
b*=[-(1+i)2]a*—b?
In orbital space, the functions adapted to theaxis (the
polarizing operator) are the most localized orbital set, those

adapted to thg axis (the magnetizing operator) are the most
delocalized complex orbital set, and those adapted ta thés

mechanical description of the three singlets permitted in the (the covalent perturbation operator) are the most delocalized

model and the three sublevels of the triplet, which allow the
use of angular momentum algebra in both cases.
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Appendix

It is frequently necessary to translate the full two-electron
wave function from an initially chosen one-electron basis set
to another, e.g., from a localized to a delocalized choice of
orbitals, etc. This transformation is most readily accomplished

using the well-developed apparatus of angular momentum

algebra. This is commonly used for this purpose in the spin

space, but is just as useful in the isomorphic geminal space of

the two electrons.

One-Electron Space. Any operator acting in the two-
dimensional one-electron function space spanned baydb
(wherea is a. or A andb is 3 or B) can be written as a linear
combination of the unit matrixg€/3) and the three Pauli matrices
Oy, 0y, ando,. E.g., the Hamiltonian is

h,=h,@/3)+h-&
By definition of the Pauli matrices, the functioasndb are

eigenfunctions ofy, i.e., are adapted to tteaxis. This could
be indicated explicitly by calling thef andb? For spin space,

“real” (constant complex phase) orbital set.

Two-Electron Space. The two-electron spin and geminal
function spaces are obtained as direct products of the one-
electron spaces of the first and the second electron. Permuta-
tional symmetry permits a factorization of each of these four-
dimensional direct product spaces into a direct sum of a three-
dimensional subspace with elements symmetric with respect to
an interchange of electron labelg]([y], and [g, corresponding
to a particle of spin one), and a one-dimensional space with an
element that is antisymmetric with respect to this interchange
([o], corresponding to a particle of spin zero). In geminal space,
wherea is Aandb is B, [X] = 9X], [y] = 9yl, [ = 94, [0]
=T, and in spin space, wheads o. andb is 5, [X] = O[x], [V]
= 0O[yl, [4 = ©[7], [o] = Z.

These two-electron bases have been built fronethdapted
one-electron functions = a 2andb = b 2and could be labeled
[X]% etc. Starting witha Y andb Y or a *andb * instead, one can
similarly construct the analogous two-electron bas@5 étc.,
or [X]%, etc. The standard rotation operators for particles of spin
zero and one show how the two-electron basis set responds to
any rotation of the one-electron basis set:

R(@) =1
R w)=1—in-J sinw — (n-J)? (1 — cosw)
where the dimensionless operatbis defined by
J1,2)=[6(0) + #(2))/2

(3%2 is the unit operator an#lJ is the angular momentum

this z axis lies in real three-dimensional Cartesian space, and operator).

for orbital spacezis the direction of the polarizing perturbation

in the three-dimensional abstract space of perturbations of a@n axisn with directional cosines

perfect biradical. In order to guarantee cyclic permutation
properties with respect to the indicgsy, and z, they- and
x-adapted basis functiors, bY anda*, b* are derived frona?
and b? by application of a+27/3 and a—27/3 rotation,
respectively, around an axiswith directional cosinesy = ny
=n, = 372 The directiong/ andx are the directions of axes
in real Cartesian space whenand b are taken to be spin

For instance, applying rotations by27/3 and—27/3 about
n,=n, = 32 we
obtain [o]* = [o]’ = [0]?, [x]* = [ = [y]* [Y]* = [X¥ = [Z~
[Z* = [y]Y = [X]? and note that cyclic permutation symmetry of
the three indices is preserved as expected.

Any operator acting in the one-dimensional two-electron
function space spanned by][is a simple scalar, and any

(46) Altmann, S. L. Rotations, Quaternions, and Double Groups
Clarendon Press: Oxford, 1986.
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Hermitean operator acting in the three-dimensional two-electron using the most localized set of orbitads B, we have
function space spanned by [[y], and [Z] can be written as a R R R

linear combination of the three operataks Jy, and JZ, their H= Z(WUJu + Wouuz), u=xYy,z
squares}? J2 andJ2, and their anticommutatorsJ},{, + U
33y, Q3 + 3Jy), and G, + 3,3).

The Hamiltonian for the full two-electron problem without
spin—orbit coupling can be written in terms of angular
momentum operators in a way that is completely analogous for
the singlets (geminal space) and the triplets (spin space). Usmg
the principal axes of the spirspin dipolar coupling tensor, and  JA9538391

where in the spin spacéy, = gBeBy, Wyx= —D/3 + E, Wyy =
—D/3 — E, W,, = 2D/3, and in the geminal spac®@k = yas,

W, = 28B-(r x V)ag, Wy = S — €E-rag, Wix = 2Kag, Wyy
= 0, Wy, = 2K\



